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Abstract

A force of mobile targets is subject to a long period of surveillance,

followed by a sudden application of force (the "pounce"). Some targets will

escape the pounce because they have not been recently enough localized by the

surveillance system. The problems considered are the division of a budget

between surveillance and pounce, the allocation of pounce forces to targets,

and the description of how the fraction of targets that survives the pounce

depends on the budget.





Surveillance/Pounce Model

1. Introduction

It is sometimes imagined that a major war might begin, and having begun

might end, with a sudden attack by one side on the strategic nuclear retalia-

tory forces of the other. There are two properties of the target forces that

might enable them to survive such an attack, and therefore hopefully to deter

it in the first place: hardness and mobility. Hardness can be overcome by

accuracy, whereas mobility cannot. Since accuracy seems to be destined to in-

crease with time, it is natural to study the '/'ilnerabllities of mobile sys-

tems. That is the purpose of this report. More specifically, the purpose is

to study how the survivability of a mobile force can be expected to depend on

the budget devoted to reducing it, and on how that budget ought to be spent,

given the surveillance/pounce attack structure that is outlined more precisely

below.

The attack cannot begin in complete Ignorance of the locations of the mo-

bile targets if ic is to have any significant prospect of success. The sur-

face area of the earth is very large in comparison to the lethal area of even

a nuclear weapon. This remains true even if a priori considerations reduce

the operating area Co ""only" a desert or an ocean. If the the attack is to be

a surprise attack, it seems safe to conclude that a surveillance system of

some sort must operate during the period preceding the surprise, having the

function of continuously providing localization information that will be uti-

lized by Che pounce system when the attack is made. Since both systems con-

tribute to the same final goal, the attacker must face the budgeting problem

mentioned above.

Surveillance systems can be categorized in various ways, amongst which

are saturability (the number of targets that can be handled simultaneously).



accuracy, and timeliness. The system to be studied here is insaturable and

perfectly accurate, being imperfect only in the respect that position reports

on targets occur occasionally, rather than continuously. Spending money on

the system simply increases the frequency of contacts. One might imagine

launching more satellites, hiring more agents, or implanting more sensors in

the operating area.

Let T. be the age of the most recent contact on the i— target at the

time of the attack. If the time late T. is large, then a large amount of

of pounce force will be required to make up for the large associated uncer-

tainty area, or alternatively the target can be allowed to escape and the

pounce forces concentrated on easier targets. In other words, there is a pro-

gramming problem involved: given the times late for all the targets, how

should the pounce force be distributed amongst the targets in order to mini-

mize the average number of targets that survive the pounce? It is only after

this programming problem has been solved that the tradeoff between surveil-

lance and pounce forces can be considered, and finally the relationship between

survival probability and total budget can be determined. Most of this essen-

tially mathematical activity is carried out in Section 4. Section 3 summa-

rizes the major points and illustrates the relationship between survival prob-

ability and total budget with an example.



2. Assumptions, definitions, and notation

Contacts on each target are assumed to be independent Poisson processes,

with the contact rate A being a linear function of the amount of money spent

on the surveillance system. The mean time between contacts on each target is

therefore 1/X . The results obtained below would probably not be qualita-

tively different if detections occurred regularly on each target every 1/A ,

provided the phases of the contact streams were all independent. The Poisson

assumption is natural if contacts are due to irregular, localized phenomena

that make the targets occasionally visible to the surveillance system. The

time of the attack is assumed to be independent of the surveillance process;

i.e., the attacker does not have the option of waiting until all of the times

T. happen to be small (as will happen eventually) before attacking. The late

times T. are therefore all independent and exponentially distributed with

mean 1/X .

th
If A. pounce <inits are allocated to the i— target, the probability

that target i survives is assumed to be exp(- A./kT.), where k is some

constant. There are at least two sets of assumptions where this formula is

appropriate:

a) If the target's motion is diffusion in two dimensions [1], then the

expression is correct if A. represents lethal area (in the shape of

a circle with radius /a/tt) and k is 2tt times the diffusion constant
1

(kt/2TT is the variance of target position relative to the last point

of contact in each dimension). In this case, the pounce forces con-

sist of a certain number of weapons, with the translation from weapons

to lethal area depending on the hardness of the targets.

b) If each target has a top speed v , and if each target is aware of

any contacts made on it, and if the pounce force essentially has the



job of re-establishing conCacC by area search of an expanding circle

9

[2], then the formula applies with k. = ttv" and A. being the search

rate (area per unit time) of all assigned pounce forces, assuming

that the amount of time available for area search is large compared

to 1/X .

In addition to being applicable in two highly diverse circumstances, the for-

mula exp(- A.,/kT,) also has simplifying analytic properties, so it will be em-

ployed exclusively in what follows. The sum A = A. + . . . + A,^^^ is fixed and

will be called the "total pounce". The cost of A will be assumed linear in

A .

The following notation will be employed:

A = contact rate on each target

c = cost of the surveillance system per unit of X
s

T. = time late for target i

A. = pounce assigned to target i

A = total pounce available

c = cost of pounce svstem per unit pounce

n = number of targets

q = expected fraction of targets surviving

k = constant in the survivability expression exp(- A. /kT )11
B = total budget



3. Summary and example

Given n, c , c , and k , the budget B required to eliminate all but q
s p

of the targets can be obtained as follows:

1) Look up the 8-value corresponding to q in Figure 1. If q < .1 ,

use the formula 6 = /Jin( .&55/q) (derived in the appendix).

2) The total budget required is B = 20/n c c k, which should be
s p

divided equally between surveillance and pounce forces.

For example, suppose that there are 100 targets that habitually move ran-

domly in such a manner that their motion can be characterized as diffusion,

2
and that k (according to the discussion in Section 1 ) is 100 mi"/hr. Suppose

further that a surveillance system capable of providing a fix every 1(D hours

(X = .1/hr.) on each target would cost SIO , with the cost of better or worse

systems being proportional to detection rate;

11 12
ie. , c = ($10 )/(.l/hr.) = 10 "^hr. Assume that the oounce force is some

s

5 2 1

1

type of remotely applied weapon for which c = $ 10 /mi". Then /n c c k = 310^ ^ ^rrr
p Sp

If q = .240, Figure 1 shows 3=1, and therefore $10 should be spent on each

system. The result is a surveillance system with \ - .1/hr. and a pounce system

5 2
with 10 mi of lethal area. Doubling the budget would double 3 , with the conse-

quence that q would be only about .01. Halving the budget would make q = .56,

ate.

It is remarkable that Figure 1 does not exhibit the exponentiall;;^ decreasing

returns phenomenon that is so common in models of this sort. While it is true that

actually wiping out all the targets with certainty is not possible with any finite

budget, it is nonetheless possible to obtain remarkably small values for q , as

the above example illustrates. Roughly speaking, a surveillance/pounce system

either works or it doesn't. If it works at all, then it is likely to be decisive.





The calculations above were based on the assumption that n is "large".

To test the validity of this assumption, a simulation was written wherein A = 10

units of pounce were optimally allocated to n = 100 targets with X = . 1 and

k = 100. The optimal allocation program is easy to write for a given A and A

because it is equivalent to an elementary distribution of effort problem in the

theory of optimal search [3]. In theory, the average number of surviving tar-

gets should be 24.0. After 10,000 replications of the simulation, the estimated

mean and standard deviation of the number of survivors were 24.2 and 6, respec-

tively. The difference between 24.0 and 24.2 is small enough to ignore for

most purposes, so 100 can be considered "large". Further experimentation re-

vealed that Che theoretical model is usually adequate even when a is as small

as 10.



4. Analysis for large n

Let a(u) be the amount of pounce allocated to any target for which the

time late is u . The probability that a target survives is (averaging over u)

(1) q = / -^ exp(-Xu)exp(-a(u)/ku)du ,

I

t

\

and the average amount of pounce per target is
I

(2) a =
J

X exp(-Xu)a(u)du

The average total pounce required is n a , and the average cost of the pounce

forces is therefore c n a . Since n is assumed large, we will not distin-
P

guish between cost and average cost, so the problem of an attacker with a total

budget 3 is to minimize q (as given by (1)) subject to the total cost

constraint

(3) c na + c A < B
P s -

The minimization problem will be solved by introducing a La Grange multiplier

n c on the survival probability q . The resulting La Grangian expression to

be minimized isLSnc q+c na+c \ . Note that c can be interpreted
t ^ p s t

^

as the damage caused to the attacker by a surviving target, in which case L i

"net total loss". In terras of the decision variables a( • ) and X , L is given

(4) L = n / A exp(-Au) [c 3xp(-a(u)/ku) + c a(u)[ du + c X^ p ^ s

Minimization with respect to a(u) can be carried out by equating the derivative

of the integrand to and solving for a(u) , except that a(u) cannot be negative



The result is

* *
,k.u Zn(u /u) for u < u

' (5) a(u) =, ^
for u >_ u ,

* *
where u = c /(c k). Note that a(0) = and a(u ) = . The pounce forces

t p

are mainly allocated to targets that are neither too easy (in which case a small

amount of pounce suffices) nor too hard (in which case no amount will do much

good). Substituting (5) into (4), the result is

*

(6) L = n / X exp(-Xu)|c ku + c ku 2.n(u /y)} du

+ n f X exp(-Xu){c + j du + c X

*
Noting that n c ku = n c , Equation (6) can be rearranged to give

P ^

*
u *

(7) L = n c k[f Xu exp(-Xu)|l + £n(u /u) I du + u exp(-Xu )] + c X .

Letting x = Xu and substituting v = Xu in Che integrand, (7) is the same as

*
(8) L = n c (q(x) -i- b(x)) + x c /u , where

X

(9) q(x) = (1/x) / V exp(-v) dv + exp(-x) = (1 - exp(-x))/x , and

(10) b(x) = (1/x) / V exp(-v) in(x/v) dv .



The three terras in (8) are the costs of surviving targets, pounce forces, and

surveillance forces, respectively.

The object is now to minimize the sum of the three costs (L) with respect

to X , since x is simply a dimensionless version of a . The minimizing x

is such that (d/dx) L = 0, unless c is so small that x = is optimal. Let

f (x) = - (d/dx)(q(x) + b(x)). Then (d/dx)L = if and only if f(x) = a
,

* 2
where a = c /(n c u ) = (c c k)/(n c ). The function f(x) is discussedSt s p t

further in the appendix. One fact that will prove useful below is that

b(x) = xf(x) .

The simplest way to investigate the tradeoff between survival probability

q and budget B is to use x (the dimensionless surveillance rate) as a pa-

rameter. Given x , the survival probability is immediate from the formula

*
for q(x). The cost of surveillance is x c /u , the cost of pounce is n c b(x),

and 3 is simply the sum of the two. To determine u , one must first obtain

c from the equation f(x) = a; ie,

,

(11) c = [c c k/n f(x)]^^^
t s p

It is a remarkable fact that the two costs are always equal, with the common

2 1/2
value being (n c c k x f(x)) . This can be shown bv simply substituting

S p ^ r J o

into the formulas and using the fact that b(x) = x f(x) . Therefore

B = 2/n c c k (x/f(x)) . Figure 1 was constructed parametrically by varying
s p

X ; it shows the tradeoff between survival probability q(x) , and the dimen-

sionless budget xv'f(x) .

10



APPENDIX

From Section (3), we have

(Al) q(x) = (1 - exp(-x))/x

X

(A2) b(x) E (1/x) / V exp(-v) Jln(x/v) dv

(A3) f(x) = (d/dx)(q(x) + b(x))

We will first show that b(x) = xf(x). The easiest way to do this is through
00

r n
power series expansion. The power series for exp(-x) is

/_ (-x) /n ! Using
ra=0

this, it is easy to obtain

oo

(A4) q(x) =1+1 (-x)"/(n+l)!
n=l

-^ n+1 n+2 ''

The fact that
J

v £n(x/v) dv = x /(n+Z)" can be established by substituting

1
^^.^ 2

u = v/x and then using the fact that / u 2.n(l/u) = l/(n+2) . It follows that

(A5) b(x) = (1/x) I (-x)''^^/n!(n+2)^ = 7 (-x)""/ (n-1 ) ! (n+i
)

'^
.

n=0 n=l

Therefore, combining like terras in (A4) and (A5) and using the fact that

1/n - l/(n+l) = l/n(n+i),

(A6) q(x) + b(x) = 1+1 (-x)'^/n!(n+l)^
n=l

11



Upon taking - (d/dx)(q(x) + b(x)) term by term, we obtain

00

(A7) f(x) = Z (-x)''"V(n-l)!(n+l)^ .

n=l

The fact that b(x) = xf(x) follows upon comparing terras in (A5) and (A7).

The power series (A7) can conveniently be used to compute f(x) when x is

small. For large x , however, an approximation can be based on the fact that i

(A8) f(x) = (l/x"){/ q(t)dt + exp(-x) - l} ,

which is most easily demonstrated by showing that the power series of the right

hand side of (A8) is the same as (A7). Since

x

(A9) Zim / q(t)dt - £n x = y , where
x-*-«»

T = .577 ... is Euler's constant [3], this leads to the approximation

(AlO) f(x) = (i/x'^)(Y + £n X - 1)

Since y - 1 = Jln(.655), (AlO) can also be expressed as

(All) x"f(x) = £n(.655x)

Finally, since q(x) Z 1/x for large x , the expression given in Section 3 is

simply x/f(x) with 1/q substituted f or X

12
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